For #1-6, decide if the IVT guarantees the existence of a 'c' such that f(c) equals a given output on the given interval. If it does exist, find 'c'.

1.
$$f(x) = x^2 - 4x + 3$$
 on [2, 4], $f(c) = 0$

1.
$$f(x) = 1$$

1.
$$f(x) = x^2 - 4x + 3$$
 on [2, 4], $f(c) = 0$

For #1-6, decide if the IVT guarantees the

existence of a 'c' such that f(c) equals a

given output on the given interval.

If it does exist, find 'c'.

2.
$$f(x) = x^3 + 3x - 2$$
 on [1, 3], $f(c) = 0$

2.
$$f(x) = x^3 + 3x - 2$$
 on [1, 3], $f(c) = 0$

3.
$$f(x) = x^2 + x - 1$$
 on $[0, 5]$, $f(c) = 26$

3.
$$f(x) = x^2 + x - 1$$
 on $[0, 5]$, $f(c) = 26$

4.
$$f(x) = x^2 - 6x + 8$$
 on [1, 6], $f(c) = -2$

4.
$$f(x) = x^2 - 6x + 8$$
 on [1, 6], $f(c) = -2$

5.
$$f(x) = x^3 - x^2 + x - 2$$
 on [0, 3], $f(c) = 22$

5.
$$f(x) = x^3 - x^2 + x - 2$$
 on [0, 3], $f(c) = 22$

6.
$$f(x) = \frac{x^2 + x}{x - 1}$$
 on [2.5, 4], $f(c) = 6$

6.
$$f(x) = \frac{x^2 + x}{x - 1}$$
 on [2.5, 4], $f(c) = 6$

- 7. Use the Intermediate Value Theorem to show that for all spheres with radii in the interval [0, 5], there is one with a volume of 275cm³.
- 7. Use the Intermediate Value Theorem to show that for all spheres with radii in the interval [0, 5], there is one with a volume of 275cm³.